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* Introduction

Fermilab is the only laboratory in the US Laboratory that 1s
collaboratmg on both warm (NLC) and SRF (TESLA) linear
collider technology R&D.

= Accelerator Physicists and Engineering staff from Technical
Division and Accelerator Division have contributed significantly
to both the Linear Collider designs.

s Fermilab ESS has played a leading role in the US site studies for
the Linear Collider sites in Illinois and California.

= Fermilab Particle Physicists are working on four major detector
components R&D and coordinating simulation efforts.
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iAcceIerator Physics Studies

e The key to the success of the Linear Collider is
production and transport of low emittance beam to IR.

e At the start of our accelerator physics effort we have
decided to look at

e Damping Rings for TESLA and Pre-Damping Ring
for NLC

e Emittance preservation in LINAC and alignment
requirements.

e Electron Beam Physics modeling tools
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*TESLA Damping Ring

e TESLA design of Linear Collider requires 2820 bunches of
electrons at ~335 nsec spacing. This makes the TESLA
Damping Ring rather long.

 The present design of the TESLA Damping Ring though
technically sound 1s 17 kms long. The key limitation being
faster kicker.

* We are investigating several 1ideas on a faster kicker scheme by
developing a common lattice design.

* We are developing conceptual design(s) for these kickers and
how to test its performance.
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*Damping Ring Studies

Multi-Bunch Trains with inter-train gaps

filled buclets

ﬂﬂﬂﬂﬂﬂgﬂ/l*— ~64ns gap —>| | | | ] | -
<:Z extraction
::::::::/1.;1':}.2\" hnc/

always 1nject and eject the last
bunch 1n a train

kicker rise time < 6 ns, but fall time
can be ~gap length

beam loading maintained by ~100 m ring with shared RF system

~6 km ring filled by transfers of undamped trains from the
~100 m ring J. Rogers
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i Longitudinal RF followed by Dispersive Section

kick

 kicker rise, fall times can be 4x bunch spacing
* could be combined with #1 to accommodate longer fall-time

kicker

D. Rubin
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oL Fourier Series Kicker
damping €=

1njection/extraction

ool ooepaemeasemenl 3

kick

e kicker 1s a series of NV transverse RF cavities tuned to
frequencies which ditfer by ~3 MHz.

» proper adjustment of amplitudes and phases kicks one bunch
while leaving the next (NV-1) undisturbed.

e SCRF + transverse kick minimizes beam-induced fields in
cavities. G. Gollin
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DAMP ING RING
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Damping Ring Lattice
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‘hComparison of two designs

Parameter Small ring (¢'/¢) Dogbone (¢'/¢)
Energy 5 GeV 5 GeV
Circumference 6.12 km 17 km
Horizontal emittance je_ 2.5 x 10°m 8 x 10°°m
Vertical emittance ye, 0.02 x 10°m 0.02 x 10°°m
Transverse damping time 7, |28 ms/ 44 ms 28 ms / 50 ms
Current 444 mA 160 mA

Energy loss/turn

7.3 MeV /4.7 MeV

21 MeV / 12 MeV

Radiated power

325 MW /2.1 MW

3.2 MW/ 1.8 MW

Tunes O, O,

62.18, 28.38

72.28,44.18

Chromaticities &, &,

-112, -64

-125, -68

We are working on further developing these Kicker ideas.
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Low Emittance Transport in Main Linac

amping Rings generate Low Emittance Beam this Emittance
must be preserved through, Bunch Compressor, Main Linac and
the Beam Delivery System.

« Emittance Budget in Main Linac (NLC) from DR extraction:
3.3% 1n horizontal and 50% of vertical plane.

* Emittance growth 1n the Linac 1s caused by

* Single Bunch: Transverse wakefield resonantly drives the tail
of bunch 1n betatron oscillation

» Multi Bunch: Leading bunch deflects trailing bunch center.
* Incoherent Sources: Misalignments and quadrupole errors
 Ferbrication error (Straightness of RF structure and HOM

frequency error.) reduces the effect of LR wake suppression.
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Study of Beam Based Alignment

* Alignment tolerances can not be met by ab initio installation.
* Quads and RF structures need to be aligned with beam-based measurements.
* Two methods

* French Curve: Read all BPMs, compute magnet moves, align RF

* Dispersion Free Alignment

RF structures, each with
Ouad with BP M 2 BPMs (1 each end). COuad with BPM:
0.3 un v resclution ~1 pm v resoclution O3 un >y resclution

Reanote-controlled
magnet
translation stage,
*=v degrees of
freedom., 50 nm
step size

Remote-controlled
girder
translation stage. =X¥
degrees of freedom
each end

Remotely controlled Translation Stages for quads and RF girders
High resolution BPMs in Quads and RF structures
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Results
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% DFS 1s More effective 1n vertical plane.
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IStructu re-to-Girder Offset
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% Growth in Emittance
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i Engineering Test Facility for LC

At present there are Test Facilities at SLAC, KEK and
DESY that are designed to do LC R&D.

We believe that next generation of LC Engineering Test
Facility is needed for a complete system test of the Linear
Collider and accelerator physics.

The scope of such a facility needs to be defined.

To be most effective this proposal should be developed by
the U.S./International linear collider collaboration(s).

Fermilab is taking a leading in organizing the ETF effort.
We assume that the emerging design would go to the
Global Design Organization as a proposal.
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*Thoughts on the Scope of ETF

It must be done with International collaboration.
It should have the capability to do perform beam studies.

ETF could be 1% demonstration machine for the technology
chosen by ITRP 1n the final machine configuration.

It could have an Injector, Linac (5 GeV), Damping Ring, post
damping ring Linac (~0.5 GeV-5.0 GeV)

* [t could be a development facility for the Instrumentation, controls
etc needed for the LC.

* [t could be a development facility for one of a kind device.

* It could be used for industrialization/ later testing of the major
component.
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*N LC R&D Overview

« X-Band RF Structure Design and Fabrication

» Review of cell table of SLAC disk design, construction with
local industry, QC of the RF disk

* Frequency tuning of the single disk (if needed).

 Fabrication of 60 cm RF structure

* Frequency tuning of the assembled RF Structure
* RF Design work

* Design of the Fermilab wave guide coupler for FXB, FXC
and FXD Structures

« FXD HOM extraction design and analysis
* Design of Fermilab Structure FXE
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RF Quality Control Clean
Room (Class 3000)

= Disks & Couplers are precision
machined, no diamond turning
(industrial vendors)

ructure Factory

« Brazed structures, no
diffusion bonding

A Structure during Bead-Pull
Measurements & Tuning
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-~ 60 cm. Long, high phase advance (150 deg.), traveling wave structures

(aka H60VG3, no slots ) were produced. (FXB001-006)

— 60 cm. long, 61 mm o.d. cells; 150 degree phase
advance; 3% group velocity; slotted cells with .17 a/A;
fully brazed construction w/o H2; Fermilab Wave guide
(FWGQG) I/O couplers and matching cells, no HOM
extraction, 4 tuning holes instead of the 2 in FXB
structures. (FXCO001-005)

60 cm. long, 61 mm o.d. cells; 150 degree phase
advance; 4% group velocity; tapered design with slotted
cells and .17 a/A ; fully brazed construction w/o H2; FWG
I/O couplers; /O HOM extraction; twofold interleaving
design feature. (FXD001-006)

e FXE: Fully Fermilab Designed

Fermilab DOE Annual Review
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FX-band Structures at NLCTA

» Four structures currently operating at NLCTA were
fabricated by Fermilab.

» FXB-006 1s the first structure built by anyone to achieve
NLC specification for gradient and breakdown rate (<0.1
breakdown/hour @ 60 Hz 400 nsec, 65MV/m)

FXB-006 | | FXC-001
= FXCO003 has also met the NLC design goals.
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Processing results from the 4 latest NLC/GLC prototype structures

3 out of 4 exceed breakdown rate requirements at 65 MV/m

NLC/GLC design pulse
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FXC-003 golden run at 65 MV/m with the NLC/GLC design pulse
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Eight Pack Phase 2: Power Handling

From SLED II

From NLCTA Station 1 | Phase I1a
Overmoded
From NLCTA Station 2 |
_ 300MW, 400 ns
% % ¢ %
3dB 3dB 3dB ; 3dB
| Structure | | Structure | | Structure | | Structure | | Structure | | Structure | | Structure | | Structure
These structures could be located in stations 1&2
From SLED II Phase IIb
Overmoded
| | |
2 6 dB 2 4.8 dB 2 3dB 2
3dB ; 3dB ; 3dB ; 3dB
| FXc | | Fxc | | Fxc | | Fxc | | FXp-a | | FXD-b | [SLAC/KEK| [SLAC/KEK]
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Strongback Production

- " —

Dummy Structure being test fitted
On an NLCTA-style “Strongback”

FXB-002 Mounted on NLCTA-style “Strongback”

* We produced nine structure supporting
systems known as “strongbacks”(six for
NLCTA use at SLAC, and three for use in
girder development at FNAL)
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Vibration studies @ MP8

Studiies: FNALGeoph =

e Effect of cooling water on structures
stability

o Comparison of Al and SS strongbacks

e Effect of vacuum on vibration transmission
e Transmission of vibration to quads (PM EM) || g
Study on more realistic supports =l
o Effect of movers on structure stability
e Adding more constrains: waveguides

In Collaboration with SLAC and Northwestern University we
are setting up a ground motion experiment in the
NUMI/MINOS tunnel.
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Overview of SCRF activities

inear Collider R&D

= For TESLA we built modulators and electron guns for TTF at DESY
(AD) and designed vertical test dewars and cryostats

= The AO photo-injector at FNAL i1s very similar to TTF and uses
TESLA acceleration cavities

= We also are designing and building a 3.9 GHz 3¢ harmonic cavity. The
purpose is to diminish the beam energy spread so that the electron
pulse length can be made very short via a magnetic chicane

= CKM

= FNAL has been doing R&D to build 3.9 GHz transverse kick cavities
for an experiment proposed at FNAL that needs an RF separated K
beam

s Proton Driver

= FNAL has a design study in progress for an intense Proton Source
based upon a 8-GeV SC linac

Fermilab DOE Annual Review 27



FNAL SCRF Technical Capabilities

oth in the FNAL Accelerator Division (AD) and Technical

Division (TD) have significant design capabilities useful for
SCRF work
= Cryogenic Engineering and Design
= Engineers with experience on big cryogenic systems (Tevatron)
= Designed 1.8 K cryostats for LHC IR quadropoles in TD
= Test them at 1.8 in FNAL Magnet Test Facility
= RF Engineering and Design
= RF design engineers
= Modern FR Engineering Software and design tools
Computing equipment

Improved modeling/analysis techniques
(eg working on the design of xband NLC structures and couplers)

= We also have been collaborating with ANL and DESY on SRF
Cavity Surface Treatment Facility and plan to expand our

collaborations with other labs and universities
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SCRF R&D

s FNAL i1s currently doing some Superconducting RF R&D
that can benefit to the TESLA proposal (3-d harmonic
system development)

s TD RF group is working on SCRF R&D for two FNAL
projects that build SCRF capabilities relevant to a LC if the
technology decision 1s for a cold machine

s CKM: Collaboration with BD. Goal is to provide SC RF cavities
(transverse kick mode) to be used to generate a separated charged
K beam for the CKM experiment

= A0 3" Harmonic cavity: Goal is to provide a 3.9 GHz
accelerating cavity to reduce longitudinal energy spread of high
current electron pulses from the A0 photo-injector. (Note: TESLA
would like us to build one of these for TTF-II also so there
continues to be collaboration in this area)
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* SCRF R&D

Building our capabilities for the future

= Develop and build elements of a SRF module
fabrication and test infrastructure

= Design and build a prototype of a 3.9 GHz
accelerating cavity for the Photo-Injector Test
Stand

= Develop a microphonics compensation system

tunel third harm. sectifn
back wall 4 x 3.9 GHz Tella cavity
2 ! 1 1 1 1 ] 1 1 1 1
[.5 - . fodo—chanel
iplet l.matr:h match
| - cryomodule
i cryomodulg
0.5 1 gl ACC | ACC2
I | e e (I o b
0.5 1
wmp dump
-1 3 TOF monitor
1.5 4 position monitors
B profile monitors
—2 T T T T T T T T
0 ) 10 15 20 25 30 a5 40

7 |m]

Fermilab DOE Annual Review 30



3.9 GHz accelerating cavity
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SCRF Module Fabrication
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SCRF Module Fabrication

Microphonics Detuning Compensation
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Cold Test of the 3.9GHz 3-cell cavity in the Vertical
Cryostat
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Q vs. Temperature
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Process Compartment Design

Mockup @ FNAL TD MDL
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L

* IB2 temporary location

Scanning Equipment From SNS
« Power hookup | |

* 100 psi Air line connection

* Leveling

Fermilab DOE Annual Review 36



Linear Collider Site Studies
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* Fermilab and LC Technology Decision

e \We are also developing detector collaboration with in US
and except that Fermilab will play a major role in such a
collaboration.

e Fermilab has considerable experience in building large
detectors, Silicon, Tracking Chambers, Muon &
Calorimeter.

e Computing Infrastructure and GRID

eIllinois and Fermilab is an ideal choice for the Linear Collider
site.

e We are working with local universities and ANL to bid to
host Linear Collider in Illinois after the technology selection.
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Summary

rmilab has made significant contributions to both the NLC and
TESLA R&D.

» Fermilab 1s aligning itself to be a significant player in the Linear
Collider

* We will continue and expand our efforts in the accelerator,
detector and IL site studies.

* We are increasing our effort in the accelerator physics in Main
Linac and Damping Ring.

* We are proposing to build a LC ETF (warm or cold) at
Fermilab to be 1n line with technology decision with U.S. and
International linear collider collaborations.

* We are increasing Fermilab and Illinois presence within the LC
collaboration(s).

* We are taking an active role in US and International efforts on LC.
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